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The scattering from spherical inhomogeneities has been a major historical topic in acoustics, optics, and
electromagnetics and the phenomenon shapes our perception of the world including the blue sky. The
long wavelength limit of “Rayleigh scattering” is characterized by intensity proportional to k* (or A~%)
where k is the wavenumber and A is the wavelength. With the advance of nanotechnology, it is possible
to produce scatterers that are inhomogeneous with material properties that are functions of radius r,
such as concentric shells. We demonstrate that with proper choice of material properties linked to the
Hermite polynomials in r, scatterers can have long wavelength scattering behavior of higher powers: k8,
k'8, and higher. These “Hermite scatterers” could be useful in providing unique signatures (or colors)
to regions where they are present. If suspended in air under white light, the back-scattered spectrum
would be shifted from blue towards violet and then ultraviolet as the higher order Hermite scatterers
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were illuminated.
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1. Introduction

The scattering of acoustic and electromagnetic waves from in-
homogeneities has a long history [18,16]. The long wavelength or
Rayleigh scattering regime is present in daily phenomena, from
the blue sky to the scattering of ultrasound by blood in Doppler
studies of vasculature. We show that a class of inhomogeneous
scatterers called Hermite scatterers of odd integer order m can
produce a long wavelength scattering amplitude proportional to
wavenumber k™t1, that is: k%, k% k5 and so forth. The result
is significant since advances in nanotechnology are enabling the
manufacture of tailored concentric “onion layer” spherical particles
of different materials [2,15], and Hermite scatterers of order m can
be detected and classified by their unique power law signatures.
This paper reviews some central relationships for simple acoustic
and then electromagnetic scattering, identifying a common inte-
gral kernel. Then, the scattering inhomogeneities are represented
by modified Hermite orders to produce higher power law scatter-
ing, with examples.

2. Theory
2.1. Scattering of acoustic waves

In this section, we examine the backscattered pressure from an
inhomogeneity of compressibility, following the classical approach
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described in Chapter 8 of Morse and Ingard [11]. This treatment
begins under the Born approximation (weak scatterers) with an
incident plane wave P; of frequency w traveling in the x-direction:

P; = Ae'™, (1)

where A is the amplitude, k = w/c is the wavenumber, c is the
speed of sound, and the e~*! term is implicit throughout. Then,
the backscattered pressure Pps is approximately

ikx 2 ~ oL
Pps (k,x) = A ET (:—n)///x(r)eiz""dVol, (2)

where « (r) is the (small) fractional change in compressibility
within the scatterer, assumed to vary only in the radial dimen-
sion, the 2k term in the complex exponential comes from the 180°
direction of backscatter, and the integration is over the scattering
volume. This equation has the form of a spatial Fourier transform
of the scatterer. Next we assume an isotropic spherical « (r), and
utilize spherical coordinates where the polar angle 6 is aligned
with the x-axis coordinate system, and k is oriented along the
x-axis. Then k - # = krcos6, dVol = r?sin 0dode, and the volume
integral becomes

Vi (k) = /// i (r) eiZket gy of

co W 2w
=/ / /K(r)eiZerOS"rzsinOd@d(p. (3)
r=06=04$=0
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Integrating first over ¢ then 6 yields

x
2
VI (k)= (T) / r-k (r)-sin(kr)dr. (4)
r=0
For the classical solution, we assume a uniform sphere of k (r) =
k0 (0 <r <a) and zero elsewhere, then eqn (4) becomes
Jj1 (2ka))

(3)

VI (k) = kodnd®
1k =ko na( 2ka

Thus, from eqn (2),

Py (k. %) = Ak (if) () (@) (“zfi(’l‘“)) . 6)

In the long wavelength limit as ka — 0, the ji (2ka) /2ka term
approaches a constant (= 1/3), and we have the classical Rayleigh
scattering proportional to k* and a® as shown in eqn 8.1.21 of
Morse and Ingard [11]. When considering scattering from random
media, it can be shown [8,9,4] that formulas similar to eqn (2)-(4)
apply to relationships between the differential scattering cross sec-
tion per unit volume oy (k) and the spatial correlation b (f) func-
tion of the inhomogeneities such that

o (k) =k*A /// b (7) e dvol, (7)

and assuming the correlation function is isotropic and simply de-
pendent on distance r, the volume integral reduces to

o0

VI (k)= /r -b (r)sin (2kr)dr, (8)
0

similar to the integral found in eqn (4) for the single inhomo-
geneity. A derivation resulting in the ji (2ka)/2ka form factor
is also well established for ensemble-averaged differential cross-
section backscatter coefficients for randomly positional spheres in
a medium [8,9].

2.2. Scattering of electromagnetic waves

Early treatments of light scattering from conducting spheres in-
clude works by Garnett [7] and Mie [10]. In classical solutions, the
scattered wave is composed of a series of spherical harmonics of
ascending orders [3]. In the long wavelength limit only the first
partial wave is considered and the solution reduces to the famil-
iar Rayleigh scattering behavior, amplitude proportional to k? (or
inve4rsely proportional to 1/A2) and intensity proportional to k* or
1/2%.

In 1918, Lord Rayleigh formulated the equations for scattering
from a spherical weak inhomogeneity, applying a differential ap-
proach considering an infinitesimally thin shell of small change in
index [17]. The differential approach leads directly to integral for-
mulations across inhomogeneous spheres resembling the integral
equations from acoustics in the previous section. From Rayleigh’s
eqn (3), (6) and (7), and examining the backscatter (angle x =0

1
in his notation for which m = 2kr cos §X> = 2kr in the case of

backscatter) we can write for a sphere of radius a:

_k? [eikx / 5\ { sin (2kr)
¢R(I€):E < . )/y(r)(4nr ) (W>dr

0

k e—ikx g
=3 " /r -y (r) - sin (2kr) dr,

0

where y (r) is the small change in index of refraction (the quantity
K — 1 in Rayleigh’s notation) and ¢g (k) is “the electric displace-
ments in the scattered wave, so far as they depend upon the first
power of K—1... at a great distance.” For the homogeneous sphere
of 1 (r) = y and radius a, Rayleigh’s integral produces his eqn
(5), which for backscatter angle x =0 and using our notation be-
comes:

ox (k) = e ik 2 (sin 2ka  cos 2ka)
REO=10\ 7 (2ka)®  (2ka)?

_ e ikx 23 ji (2ka)
=Yo\— a )
X (2ka)

using the expansion identity of the spherical Bessel function. We
note this is equivalent to our eqn (6) for the scattering of a sphere
in acoustics.

A statistical approach to scattering from small fluctuations in
dielectric constant characterized by the spatial correlation function

y (r) was later introduced by Debye and Bueche [5]. For isotropic
y (r) and for the backscatter angle, their eqn (3”) reduces to

o
2
|¢S(k)|2N<I_iT) ﬁzv/r-ﬁ(r)-sin@kr)dr, (11)
0
where |¢s (k)z‘ is the backscattered intensity, ;72 is the root mean

square variation in dielectric constant around its mean value in
the medium, and V is the illuminated volume. The integrand in
eqn (11) is similar to that following eqn (8) for acoustic inhomo-
geneities, and eqn (9) for the case of electromagnetic waves, and
also resembles eqn (4). The similarity of the integrands allows for
common conclusions about special forms for « (1), b (), y (r), and

Y ().
2.3. New Hermite scatterers

Rewriting eqn (2)-(4) for the case of an inhomogeneous « (r),
let us define

¢os (k) = g/r -k (r) - sin (2kr)dr. (12)
0

Now, let

() = R (13)

designate a “Hermite scatterer,” where m € odd integer > 1; R is
a reference radius or scale factor, GHp, (r/R) = e~ /R’ H,. (r/R),
and Hy, is the mth order Hermite polynomial formed through the
mth differentiation of a Gaussian function [1,14]. The odd orders
are chosen as they approach zero as r — 0, however the quotient
GHy, (r/R) /r reaches a finite maximum at r = 0. Examples of these
are shown in Fig. 1, where m=3,5, and 7.
Substituting the Hermite «p, (r) into eqn (12):

o0

k .
¢s (k) = 3 /GHm (r/R) sin (2kr) dr
0 (14)

m+1

= — M2 e kR’ (_szz) ’

For example, if x;(r/R) = k7(r/R) = GH7(r/R)/r, then ¢s(k)|m=7 =
—J/m32e~*kR’ (kR)8. Note the general relation for long wave-
lengths where (kR) < 1 is ¢s (k) |m ~ k™1, which reduces to
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Fig. 1. (a) Modified Hermite functions GH, (r/R) /r (arbitrary units) for m = 3,5, 7 representing odd integer orders. This function provides the recipe for spherical scatterer
properties as a function of radius, expressed as fractional change from the baseline properties of the surrounding medium. (b) Close-up of the modified Hermite scattering
functions near their zero crossings. In physical terms, negative values correspond to acoustic or electromagnetic material properties slightly less than those of the surrounding

medium.

Rayleigh scattering for m =1 (k% dependence), but can be arbitrar-
ily high depending on the ability to create stable concentric (con-
tinuous) spherical gradients in the form of «p (r) = GHy, (r/R) /1.

3. Discussion

Lord Rayleigh’s analysis of scattering from a differential shell
element allowed him to also formulate the case of periodic fluc-
tuations of inhomogeneities y (f’) within a sphere [17], and this
produced a scattering formula that was strongly angle-dependent.
He speculated that “a structure of this sort is the cause of the re-
markable colours, variable with the angle of observation, which are
so frequent in beetles, butterflies, and feathers.” Thus, the idea that
special y (r) patterns produce distinct scattering effects is at least
100 years old. However, this understanding has been conditioned
by the familiar long-wavelength behavior as k* (or k* in inten-
sity) that has been seen repeatedly over many situations in optics,
electromagnetics, and acoustics. Because of this established famil-
iarity, it must be emphasized that the Rayleigh scattering power
laws are not the upper limit on long wavelength scattering. There
is, in theory, a formulation of average differential backscatter using
a modified Gaussian autocorrelation function with zero mean, pro-
posed in [11] (see chapter 8) and more fully developed by Waag
et al. [20] (see his eqn (11) and (12)), and also in Waag et al.
[19]. This function produces a long wavelength limit that includes
a higher power law dependence on radius and frequency than the
classical Rayleigh result. In fact, Waag has reported average dif-
ferential scattering cross section per unit volume measurements
with frequency dependences nearing frequency to the fifth power
in certain scattering phantoms (see Figure 6 of [4]), and note that
these results are measured in terms of ensemble averages and in-
tensity variables (pressure squared). Thus, Waag proved that it is
possible that for a subset of scatterers, a frequency dependence of
higher than k* for intensity (k? for amplitude) is possible.

One way of assessing all of these results is by considering the

a

common volume integral / r- f (r)-sin (2kr)dr as the Fourier sine

0
transform of r - f (r), where f (r) represents the spatial spherical
inhomogeneity. In this view, the Fourier transform of the modified
Gaussian functions proposed by Morse and Ingard [11] and Waag
et al. [19] are seen to have a sharp decrease to zero transform
frequency (representing the long-wavelength limit). In a similar
vein, the GH;; functions have leading power law terms in their
Fourier sine transforms [14]. Thus, the negative sidelobes seen in
Fig. 1 are essential for decreasing to zero the low frequency part
of the Fourier sine transform, and under a precise power law. Fur-
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Fig. 2. Backscatter amplitude (arbitrary units) vs. normalized wavenumber kR -on
a log-log scale. From upper to lower are shown the Rayleigh scattering k? regime,
then results from Hermite scatterers of orders 3, 5, and 7. These illustrate the in-
creasing power laws associated with higher order Hermite scatterers.

thermore, this interpretation suggests that any of the realizable
functions shown in tables of Fourier sine transforms - for example,
Erdélyi and Batemen [6] - will yield particular scattering solutions
if implemented as a spherical inhomogeneity.

The long-wavelength scattering regime is also important in the
H-scan classification of scatterers since the k? (or w?) frequency
transfer function will convert a GH4 pulse to a GH6 echo [12,
13]. With Hermite scatterers present, a transmitted GH, pulse will
be backscattered as a GH (n+m+1) pulse, and this enables advanced
classification and identification schemes.

Finally, we note that the k™*! long wavelength backscatter is
valid to approximately kR = 1, as shown in Fig. 2. For example, if
Hermite scatterers are constructed for visible light up to ultravio-
let (UVA) at A =400 nm, then kR =1 when the reference radius
R = )\/2m ~ 64 nm. However, the Hermite « (r) profile must be
fine-grained within this dimension. In practice, condensation of
4-10 nm silica layers onto nanoparticles is possible [15], thus the
goal of achieving Hermite scatterers through the visible light spec-
trum is plausible. In acoustics with much longer wavelengths the
scale increases proportionally.

4. Conclusion

Spherically symmetric scatterers with varying acoustic or di-
electric properties can now be constructed in layers as concentric
thin shells. This motivates a re-examination of specific inhomo-
geneity functions that can be used to create unique scattering
signatures. In particular, material properties prescribed to modi-
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fied Hermite functions of odd orders m will produce long wave-
length backscatter amplitudes proportional to k™*1 . Realizations
of these inhomogeneities offer the capability to modify the color
of backscattered light from different classes of Hermite scatterers
and create unique identification schemes based on detection of the
specific power laws. This is particularly relevant in the use of op-
tical tracer particles [21] and ultrasound contrast agents [22] used
in industrial and medical applications.
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